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Abstract: Superhydrophobic silver films were fabricated by silver-mirror reaction and 
surface functionalization with thiol. The thiol-functionalization significantly improved the 
hydrophobic property of the Ag films (AFS), and their contact angle values slightly increased 
with the extension of a thiol alkyl chain, reaching about 160°. The surface-enhanced Raman 
scattering (SERS) detection capacity of these films were investigated, and AFS-Dodec 
showed the best substrate for R6G molecule detection with the concentration limit of 10−11 M. 
AFS functionalized with dodecanethiol (AFS-Dodec) was applied for the SERS detection of 
uric acid and creatinine, it exhibited good linear dependence relationship between the Raman 
intensity and analyte concentration in the concentration range of 5~1000 μM. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Uric acid is a metabolite considered as an inert end-product of purine catabolism, its 
concentration in blood is determined by the balance between uric acid production and 
excretion. It is identified as an important biomarker in urine and serum samples for 
metabolism abnormally, strong correlated of renal dysfunction in rheumatoid arthritis 
cardiovascular [1,2] and gout disease [3]. The high concentration of uric acid (>0.4 mM) is 
associated with patients experiencing severe preeclampsia [4]. Likewise, creatinine in serum 
also reflects the extent of kidney damage, such as acute kidney injury [5]. Therefore, an 
effective detection method is imperative for monitoring the content and change. 

Surface-enhanced Raman scattering (SERS) [6,7] is a sensitive spectroscopic technique 
capable of providing a characteristic molecular vibrational fingerprint, even at trace 
concentrations. Since the first report on SERS in 1977, many efforts have been made to 
achieve higher sensitivity in chemical and biological detection [8,9]. It is generally regarded 
that SERS enhancement stems from two mechanism [10,11]: One is chemical enhancement, 
which is realized by charge transfer between the analytes and the SERS substrate; the other is 
electromagnetic enhancement, which plays the dominant role in SERS enhancement [12,13]. 
It is well known that metal nanoparticles such as silver and gold can lead to strong 
electromagnetic fields, which is termed “hot spot” in SERS measurements [14], thus 
nanostructured metal material with different morphologies (nanorod, nanosphere, nanocubic, 
nanowire, etc) were fabricated to create more hot spots [15]. In addition to the intrinsic 
hotspot density, the surface state of the SERS substrates also considerably influences the 
SERS effect. The common SERS substrates have hydrophilic surface, which makes the 
analyte solution spread over the whole surface, resulting in the low detection limit even with 
high density-hotspots. Interestingly, the hydrophobic substrate can cause great shrinkage of 
the solution during the solvent evaporation process, and the analyte molecules are 
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Fig. 6. (a) SERS spectra of 10−9 M R6G mixed with Ag colloid over AFS modified with 
different thiols. (b) Detection of R6G with R6G on glass. (c) Detection of R6G with R6G on 
AFS. 

 

Fig. 7. (a) SERS spectra obtained from 10−8~10−12 M R6G mixed with Ag colloid on AFS-
Dodec, (b) the plots for SERS peak intensity at 1501 cm−1 as a function of R6G concentration 

To investigate the practical application of this superhydrophobic silver film, AFS-Dodec 
was used as SERS substrate to detect uric acid and creatinine. In the case of uric acid (shown 
in Fig. 8(a), all samples display strong Raman peaks at 638, 811, 885, 1133, 1389 and 1608 
cm−1. The 638 cm−1 belongs to skeletal ring deformation and 1133 cm−1 is originated from C-
N, more details are shown in Table 1. It is noted that SERS can equally occur for all type of 
molecules in a bioprobe and the appropriate select of the target Raman lines can increase 
signal-to-noise ratio [22–24], thus the peak at 1133 cm−1 was selected for further analysis of 
uric acid. Figure 8(b) presents the linear dependence relationship between Raman intensity of 
the peak at 1133 cm −1 and the concentration of uric acid, with R2 = 0.996. Similar result was 
obtained for creatinine detection, shown in Fig. 9. The characteristic Raman peaks intensity 
increases with the increase in the concentration of creatinine, and the linear dependence 
relationship between Raman intensity of the peak at 681 cm −1 and the concentration of 
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rough surface, and the surface becomes superhydrophobic after thiol-functionalization. By 
virtue of the condensation effect on the superhydrophobic surface, the silver film modified 
with dodecanethiol behaves as the best SERS substrate for the detection of R6G molecule 
with the detection limit of 10−11 M. AFS-Dode was also applied for the detection of uric acid 
and creatinine, and it exhibited linear dependence relationship between Raman peak intensity 
and the analyte concentration range of 5~1000 μM. The study demonstrated a facile strategy 
to fabricate efficient SERS sensor with high detection sensitivity. 
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